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Introduction

• I will talk about next-to-leading order calculations in QCD

Radiative corrections split into virtual corrections and real emission corrections

• At NLO final states are modelled more realistically

• Dependencies to unphysical scales are less severe than at leading order

• Typically, NLO predictions are in excellent agreement with data

• LO predictions can be tuned by choosing appropriate scales

(but: What is "appropriate"?, How do cuts affect those predictions?)
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Introduction

Sabine Lammers (D0 collaboration) UIndiana,  DPF2009 Detroit 

comparison of different MC event generators with D0 data (Run II, 1fb-1 )
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Outline

• Introduction

• Virtual corrections

► Basic ideas of unitarity based methods

► OPP algorithm

► D-dimensional generalized unitarity

► Massive fermions, top quark amplitudes

• Top quark phenomenology
► Top quark pair production and leptonic decay at NLO
► Various distributions for LHC & Tevatron,

Impact of NLO corrections to the decay
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Challenges

• Accuracy:  numerical stable reduction of tensor integrals

(avoid division by small numbers)

• Efficiency:  fast evaluation on a computer

(partonic cross section needs to be integrated

over phase space & folded with pdfs)
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The traditional way to do a 1-loop calculation:

• generate all Feynman diagrams

• reduction of tensor integrals to scalar integrals

• reduction to minimal set of spin and color structures

This talk:    D-Dimensional Generalized Unitarity

• completely orthogonal approach

• basic ingredients are tree level amplitudes

• better scaling with increasing number of external legs

• method is ready for phenomenology

application: Top Quark Pair Production

Approaches
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D-Dimensional    Generalized    

Unitarity

Basic ideas
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D-Dimensional    Generalized    

Unitarity

optical theorem

cut four propagators
cuts in D≠4 dimensions

[van Neerven]

[Bern, Morgan]

[Giele,Kunszt,Melnikov]

[Britto,Cachazo,Feng]

[Bern,Dixon,Dunbar,Kosower]

2Im

( )

= dΠ∫
2

Basic ideas
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Organization of the calculation

primitive  amplitude:

• minimal set of building blocks

[Bern,Dixon,Kosower]:

Color ordering

A1-loop =
∑

i

CiA
prim.
i

color factor
color ordered

primitive amplitude

• fixed ordering of external legs

• color factors are stripped off

• gauge invariant

1

Aprim.(1q̄, 2q, 4g, 5g, 3g) =

2 4

5

3



Markus Schulze,  Johns Hopkins University                   8/33

Dk = (ℓ+ pk)
2 −m2k

Tensor integral reduction

OPP algorithm: • meshes very well with the cut-based unitarity method 

[Ossola,Papadopoulos,Pittau]

• a tensor integral reduction at the integrand level

traditional approach:   (improved) Passarino-Veltman reduction

Aprim =

∫
dDℓ

Num(ℓ, {pi})

D1...DN

2006

[Ellis,Giele,Kunszt]
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Dk = (ℓ+ pk)
2 −m2k

Tensor integral reduction

OPP algorithm: • meshes very well with the cut-based unitarity method 

[Ossola,Papadopoulos,Pittau]

for the moment:

D=4

• a tensor integral reduction at the integrand level

traditional approach:   (improved) Passarino-Veltman reduction

Aprim =

∫
dDℓ

Num(ℓ, {pi})

D1...DN

2006

[Ellis,Giele,Kunszt]



2. choose vector basis that spans  physical space +  transverse space

and express all momenta in this basis,

� coefficients can be decomposed into integral coefficients and spurious terms

vanish after loop integration
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master formula 

1. partial fractioning:

OPP algorithm

Num(ℓ, {pi})

D1...DN

=
∑

[i|j|k|l]

d̄ijkl(ℓ)

DiDjDkDl

+
∑

[i|j|k]

c̄ijk(ℓ)

DiDjDk

+
∑

[i|j]

b̄ij(ℓ)

DiDj

+
∑

[i]

āi(ℓ)

Di

c̄(ℓ) = c + c̃1..r×(n
µ1
1 ...nµrr ℓµ1 ...ℓµr )

{pi} {ni}

ni·pj =0

c×
∫

dDℓ
D1D2D3



3. assuming that we know the LHS, i.e.                           ,

we can evaluate this equation for different values of    , so that 

the determination of the coefficients is a purely algebraic problem
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OPP algorithm

master formula 

1. partial fractioning:

Num(ℓ, {pi})

D1...DN

=
∑

[i|j|k|l]

d̄ijkl(ℓ)

DiDjDkDl

+
∑

[i|j|k]

c̄ijk(ℓ)

DiDjDk

+
∑

[i|j]

b̄ij(ℓ)

DiDj

+
∑

[i]

āi(ℓ)

Di

Num(ℓ, {pi})
ℓ
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OPP algorithm

3. assuming that we know the LHS, i.e.                           ,

we can evaluate this equation for different values of    , so that 

the determination of the coefficients is a purely algebraic problem

4. OPP tell us that we should choose    such that some denominators vanish

� this leads to an efficient recursive determination of the coefficients

master formula 

1. partial fractioning:

Num(ℓ, {pi})

D1...DN

=
∑

[i|j|k|l]

d̄ijkl(ℓ)

DiDjDkDl

+
∑

[i|j|k]

c̄ijk(ℓ)

DiDjDk

+
∑

[i|j]

b̄ij(ℓ)

DiDj

+
∑

[i]

āi(ℓ)

Di

Num(ℓ, {pi})

ℓ

ℓ
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Example:  4 particle process

OPP algorithm

Num(ℓ, {pi})

D1...D4
=

d̄1234(ℓ)

D1D2D3D4
+

∑

1<i<j<k<4

c̄ijk(ℓ)

DiDjDk

+
∑

1<i<j<4

b̄ij(ℓ)

DiDj

+
∑

1<i<4

āi(ℓ)

Di

multiply by                       and choose     such thatStep 1:

master formula for N=4 

D1D2D3D4 ℓ

�

Num(ℓ±, {pi}) = d̄1234(ℓ±)

there are two complex solutions 

D1=D2=D3=D4= 0

ℓ±
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Example:  4 particle process

OPP algorithm

Num(ℓ, {pi})

D1...D4
=

d̄1234(ℓ)

D1D2D3D4
+

∑

1<i<j<k<4

c̄ijk(ℓ)

DiDjDk

+
∑

1<i<j<4

b̄ij(ℓ)

DiDj

+
∑

1<i<4

āi(ℓ)

Di

multiply by                       and choose     such thatStep 1:

master formula for N=4 

D1D2D3D4 ℓ

� there are two complex solutions 

D1=D2=D3=D4= 0

ℓ±

evaluate equation for two solutions       and solve for� ℓ± d1234, d̃1234

Num(ℓ±, {pi}) = d̄1234(ℓ±) = d1234 + d̃1234(ℓ) ℓ.n1



Markus Schulze,  Johns Hopkins University                   13/33

OPP algorithm

Num(ℓ, {pi})

D4
−

d̄1234(ℓ)

D4
= c̄123(ℓ)

Example:  4 particle process

Step 2: Num(ℓ, {pi})

D1...D4
−

d̄1234(ℓ)

D1D2D3D4
=

∑

1<i<j<k<4

c̄ijk(ℓ)

DiDjDk

+
∑

1<i<j<4

b̄ij(ℓ)

DiDj

+
∑

1<i<4

āi(ℓ)

Di

multiply by                 and choose     such thatD1D2D3

ℓ

D1=D2=D3= 0

� there are infinite complex solutions for 

ℓ
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OPP algorithm

Example:  4 particle process

Step 2: Num(ℓ, {pi})

D1...D4
−

d̄1234(ℓ)

D1D2D3D4
=

∑

1<i<j<k<4

c̄ijk(ℓ)

DiDjDk

+
∑

1<i<j<4

b̄ij(ℓ)

DiDj

+
∑

1<i<4

āi(ℓ)

Di

multiply by                 and choose     such thatD1D2D3

ℓ

D1=D2=D3= 0

� there are infinite complex solutions for 

ℓ

Num(ℓ, {pi})

D4
−

d̄1234(ℓ)

D4
= c̄123(ℓ) = c123

+c̃1123 (n1.ℓ) + c̃2123 (n2.ℓ) + c̃3123 (n1.ℓ)(n2.ℓ) + c̃4123 (n1.ℓ)
2(n2.ℓ)

+c̃5123 (n1.ℓ)(n2.ℓ)
2 + c̃6123 ((n1.ℓ)

2 − (n2.ℓ)
2)
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OPP algorithm

Step 3...: solve for all coefficients recursively 

Finally: take the loop integral over

� all spurious terms vanish 

Aprim =

∫
dDℓ

Num(ℓ, {pi})

D1...D4
= d1234I

4
1234 +

∑

1<i<j<k<4

cijkI
3
ijk

+
∑

1<i<j<4

bijI
2
ij +

∑

1<i<4

aiI
1
i

Num(ℓ,{pi})
D1D2D3D4

• coefficients                              have been calculated

• scalar integrals            can be taken from an integral library

dijkl, cijk, bij , ai

Ini1..in
QCD 1-loop package

[Ellis, Zanderighi]
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OPP algorithm

Step 3...: solve for all coefficients recursively 

Finally: take the loop integral over

� all spurious terms vanish 

Aprim =

∫
dDℓ

Num(ℓ, {pi})

D1...D4
= d1234I

4
1234 +

∑

1<i<j<k<4

cijkI
3
ijk

+
∑

1<i<j<4

bijI
2
ij +

∑

1<i<4

aiI
1
i

Num(ℓ,{pi})
D1D2D3D4

• coefficients                              have been calculated

• scalar integrals            can be taken from an integral library

dijkl, cijk, bij , ai

Ini1..in
QCD 1-loop package

[Ellis, Zanderighi]

QUESTION:

How do we evaluate 

in the reduction steps ?

Num(ℓ, {pi})



remember: we extract the coefficients by considering only those 

loop momenta for which certain sets of inverse propagators vanish

� virtual particles go on-shell
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Unitarity



remember: we extract the coefficients by considering only those 

loop momenta for which certain sets of propagators functions vanish

� virtual particles go on-shell

� equivalent to unitarity cuts
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Unitarity

�

Num(ℓ, {pi})→ ΠkA
tree
k (ℓ, {pi})

this is where

OPP + Unitarity

mesh



remember: we extract the coefficients by considering only those 

loop momenta for which certain sets of inverse propagators vanish

�virtual particles go on-shell

� equivalent to unitarity cuts
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Unitarity

�

Num(ℓ, {pi})→ ΠkA
tree
k (ℓ, {pi})

this is where

OPP + unitarity mesh

remember Step 1:

Num(ℓ±, {pi}) = d̄1234(ℓ±) = d1234 + d̃1234(ℓ)

Atree1 (ℓ, {pi})×Atree2 (ℓ, {pi})×Atree2 (ℓ, {pi})×Atree4 (ℓ, {pi})
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Unitarity

� our basic ingredients are tree level amplitudes

with complex on-shell momenta
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D-Dimensional Unitarity

rational terms

rational terms:    originate from    -dependent terms 

in integral coefficients

ε

A1-loop =
∑

j

cjIj +Rthe full truth:

Rational terms 

QCD needs regularization: D = 4− 2ε

Dim. Reg. requires     to be a complex parameter  

(Dim. Reg.) 

ε
� hard for numerical implementation

Using our knowledge about the particular structure of D-dependence

of a one loop amplitude, we can construct copies of QCD in integer-

dimensionsional (D>4) spaces to interpolate  the result in                     .  D = 4− 2ε

solution:
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D-dimensional unitarity

there are two sources of D-dependence

dimensionality of 

loop momentum

number of spin and 

polarization states 

� D-dep. from loop integration � D-dep. from contraction of metric 

tensors or gamma matrices

extra dimensions in     enter isotropically: dependence on D is linear:

� loop momentum can be restricted

to 5-dimensional subspace
� evaluate at              and            

to obtain the full       -dependence

A(Ds) = A0 + (Ds − 4)A1ℓ̃2 =
∑D
i=5 ℓ

2
i

ℓ

Ds=6 Ds=8
Ds

� • OPP needs to be extended to 

pentagon contributions

• some additional master integrals

A(ℓD) = A(ℓ4, ℓ̃
2),
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D-dimensional unitarity

• spinors, gamma matrices and polarization vectors in dimensions

• loop momenta restricted to 5-dimensional subspace

• external momenta restricted to 4-dimensional subspace

all we need:   tree level amplitudes for complex on-shell momenta with  

recap: Shopping list for

D-dimensional generalized unitarity

Ds=6, 8

� this allows us to fully reconstruct a one-loop amplitude in 
dimensional regularized QCD
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Massive Fermions

Unitarity and self-energy corrections on massive quarks lines:

leads to on-shell propagator in tree amplitude

• discard terms that lead to those cuts
(truncate BG recurrence relations)

• add wave function renormalization 

constants         later δZt

( general issue for unitarity based methods! )

solution:

double cut: p2t = m2t

regular contribution external self-energy contribution!

p2t = m2t
p2t = m2t
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• Rocket-like  Fortran90 program:

(including Nf -terms with
massive top quark loop)

Implementation:

0→ tt̄ +N gluons

0→ tt̄ + qq̄ +N gluons

• fully numerical implementation:

helicity amplitudes via Berends-Giele recurrence relations

• all one needs for:                     , 

Massive Fermions

at 1-loop QCD

• helicity formalism allows us to implement top decay matrix elements

• caching of Berends-Giele-currents

• control over numerical stability: switch to quadruple precision if necessary

pp→ tt̄ pp→ tt̄ + jet
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Top Quark

Phenomenology
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Top Quark Pheno

Top quark phenomenology is rich:

• large cross section

• top quark mass, spin, charge, branching fractions

• spin correlations, forward-backward asymmetry

• sensitive to new physics

Furthermore: 

• top pairs are standard candles at LHC (constrain gluon pdf at large x)

• background to Higgs searches



MCFM:                         NLO       production,  no top decay

( LO       production,  LO top decay )

PowHeg, MC@NLO:    NLO       production,  LO top decay
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Top Quark Pheno

NLO       production and NLO leptonic decayour program:

production beyond leading order QCD:

tt̄

tt̄

tt̄

t t̄

first analytic calculation: [Nason, Dawson, Ellis, 1990]   total     production cross section   
+ various threshold corrections, electroweak corrections,...

[Bernreuther, Brandenburg, Si, Uwer, 2001]   production+decay

tt̄

programs:

• accounts for all spin correlations

• allows for arbitrary cuts

flexible MC program:

tt̄

JHEP 0908:049, 2009 
arXiv:0907.3090 [hep-ph] 



NLO       production and NLO leptonic decay
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Top Quark Pheno

leptonic top decay:   • on-shell approximation,  error 

• retain all spin correlations

• include virtual and real corrections to decay

• neglect non-factorizable contributions

O
(
Γt
mt

)

top production:  • virtual corrections using 

D-dimensional generalized unitarity

• real corrections using dipole subtraction method

tt̄



Top Quarks
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Predictions for: 

Results:

• Tevatron

• LHC @ 10TeV

Realistic final states:    di-lepton final state

require two b-jets (                                              )

Cuts:   pb−jetT > 20 GeV

pℓepT > 20 GeV

pmissT > 40 GeV

kT-clustering with R = 0.4



Top Quarks
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0

0.5

1

1.5

100 200 300 400 500 600

N
L
O
/L

O

pT(ℓ+) [ GeV ]

Tevatron

LHC

K - factor

Tevatron:   NLO change pT-distribution significantly

LHC:          smaller change but non-negligible

Results:

K-factors are not constant!



Top Quarks
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• NLO corrections to rapidity distribution are important

• NLO correction to decay shifts rapidity distributions significantly

lepton rapidity distribution

Results:

-4 -3 -2 -1 0 1 2 3 4
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200

300
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500
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d
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]
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(b)
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5
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η
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NLO (LO decay)

LHCTevatron
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• NLO corrections to rapidity distribution are important

• NLO correction to decay shifts rapidity distributions significantly

lepton rapidity distribution

Results:
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Top Quarks
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LHC

• NLO induces a tail

• boundary is top mass dependent

• spin studies for BSM particles

invariant mass of lepton and b-jet

max(M2
ℓ+b

) = m2top −m2W

Results:

M2
ℓ+b

=
(
p(ℓ+) + p(b-jet)

)2



Top Quarks

Markus Schulze,  Johns Hopkins University                   29/33

spin correlations

Results:

• large mass and short life time prevent hadronization effects to 

wash out spin information

� top spin correlations induced by production process are conserved

• spin correlations of top quarks are passed to decay products

� leptons prefer to fly parallel or anti-parallel wrt. each other 



Top Quarks
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J=1

q q̄

t̄

t t
J=0

t̄

g g

close to threshold:
S-wave production

(L=0)

� leptons preferably parallel

ℓ+

ℓ−

� leptons preferably anti-parallel

ℓ+

ℓ−

spin correlations

Results:
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-1 -0.5 0 0.5 1

0.4

0.5

0.6

d
σ

σ
d

cos(
ϕ

ℓ
+

ℓ
−
)

cos(ϕℓ+ℓ−)

(d)

LO

NLO

NLO (LO decay)

LHC

Tevatron

leptons preferably parallelleptons preferably anti-parallel

ℓ+

ℓ−

• substantial angular correlations, even at NLO

• NLO effects at Tevatron are significant

typical observable:
angle between the directions of flight of 

leptons in the corresponding top rest frame
ϕℓ+ℓ− :1

σ
dσ

d cos(ϕ
ℓ+ℓ−

)

ℓ+

ℓ−
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simpler observable:
opening angle of the leptons in the 

laboratory frame
ψℓ+ℓ− :

• top quark rest frames need not to be reconstructed

• angular correlations remain, stronger NLO effects at LHC

1
σ

dσ
d cos(ψ

ℓ+ℓ−
)
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Summary

D-dimensional generalized unitarity...  

... is a robust and transparent method to calculate 1-loop corrections

... basic ingredients are on-shell tree amplitudes

... is ready for phenomenology

Top quark pair production

flexible MC program for NLO       production and NLO leptonic decaytt̄

... accounts for all spin correlations

... interesting distributions sensitive to spin correlations 
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dimensional spae time, the number of spin eigenstates hanges. For example, massless spin-one partiles in Ds dimensions have Ds � 2 spin eigenstates while spinors in Ds dimensionshave 2(Ds�2)=2 spin eigenstates. In the latter ase, Ds should be even.The spin density matrix for a massless spin-one partile with momentum l and polariza-tion vetors e(i)� is given byDs�2Xi=1 e(i)� (l)e(i)� (l) = �g(Ds)�� + l�b� + b�l�l � b ; (5)where b� is an arbitrary light-one gauge vetor assoiated with a partiular hoie of po-larization vetors. Similarly, the spin density matrix for a fermion with momentum l andmass m is given by 2(Ds�2)=2Xi=1 u(i)(l)u(i)(l) = =l +m = DX�=1 l�� +m : (6)While, as we see from these examples, the number of spin eigenstates depends expliitly onthe spae-time dimensionality, the loop-momentum l itself has impliit D-dependene. Wean de�ne the loop momentum as aD-dimensional vetor, with the requirementD � Ds [35℄.We now extend the notion of dimensional dependene of the one-loop sattering amplitudein Eq. (1) by taking the soures of all unobserved partiles in Ds-dimensional spae-timeA(D;Ds)(fpig; fJig) = Z dD li(�)D=2 N (Ds)(fpig; fJig; l)d1d2 � � �dN : (7)The numerator funtion N (Ds)(fpig; fJig; l) depends expliitly on Ds through the numberof spin eigenstates of virtual partiles. However, the dependene of the numerator funtionon the loop momentum dimensionality D emerges in a peuliar way. Sine external partilesare kept in four dimensions, the dependene of the numerator funtion on D�4 omponentsof the loop momentum l appears only through its dependene on l2. Spei�allyl2 = l2 � el2 = l21 � l22 � l23 � l24 � DXi=5 l2i ; (8)where l and el denote four- and (D�4)-dimensional omponents of the vetor l. It is apparentfrom Eq. (8) that there is no preferred diretion in the (D� 4)-dimensional subspae of theD-dimensional loop momentum spae.A simple, but important observation is that in one-loop alulations, the dependene ofsattering amplitudes on Ds is linear. This happens beause, for suh dependene to appear,8
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we need to have a losed loop of ontrated metri tensors and/or Dira matries omingfrom verties and propagators. Sine only a single loop an appear in one-loop alulations,we �nd N (Ds)(l) = N0(l) + (Ds � 4)N1(l): (9)We emphasize that there is no expliit dependene on either Ds or D in funtions N0;1.For numerial alulations we need to separate the two funtions N0;1. To do so, weompute the left hand side of Eq. (9) for Ds = D1 and Ds = D2 and, after taking appropriatelinear ombinations, obtainN0(l) = (D2 � 4)N (D1)(l)� (D1 � 4)N (D2)(l)D2 �D1 ;N1(l) = N (D1)(l)�N (D2)(l)D2 �D1 : (10)Beause both D1 and D2 are integers, amplitudes are numerially well-de�ned. We willomment more on possible hoies of D1;2 in the forthoming setions; here suÆe it to saythat if fermions are present in the loop, we have to hoose even D1 and D2.Having established the Ds-dependene of the amplitude, we disuss analyti ontinuationfor soures of unobserved partiles. We an interpolateDs either to Ds ! 4�2� (the t'Hooft-Veltman (HV) sheme) [34℄ or to Ds ! 4 (the four-dimensional heliity (FDH) sheme) [35℄.The latter sheme is of partiular interest in supersymmetri (SUSY) alulations sine allSUSY Ward identities are preserved. We see from Eq. (9) that the di�erene between thetwo shemes is simply �2�N1.We now substitute Eq.( 10) into Eq. (7). Upon doing so, we obtain expliit expressionsfor one-loop amplitudes in HV and FDH shemes. We deriveAFDH = � D2 � 4D2 �D1�A(D;Ds=D1) � � D1 � 4D2 �D1�A(D;Ds=D2);AHV = AFDH � � 2�D2 �D1��A(D;Ds=D1) �A(D;Ds=D2)� : (11)We emphasize that Ds = D1;2 amplitudes on the r.h.s. of Eq. (11) are onventional one-loopsattering amplitudes whose numerator funtions are omputed in higher-dimensional spae-time, i.e. all internal metri tensors and Dira gamma matries are in integer Ds = D1;2dimensions. The loop integration is in D � Ds dimensions. It is important that expliit de-pendene on the regularization parameter � = (4�D)=2 is not present in these amplitudes.9
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funtion. Hene the integrand of the N -partile amplitude in Eq. (1) an be parameterizedas N (Ds)(l)d1d2 � � �dN = X[i1ji5℄ e(Ds)i1i2i3i4i5(l)di1di2di3di4di5 + X[i1ji4℄ d(Ds)i1i2i3i4(l)di1di2di3di4+ X[i1ji3℄ (Ds)i1i2i3(l)di1di2di3 + X[i1ji2℄ b(Ds)i1i2 (l)di1di2 + X[i1ji1℄ a(Ds)i1 (l)di1 : (13)where the dependene on the external momenta and soures are suppressed. From four-dimensional unitarity we know that omputation of eah ut of the sattering amplitude issimpli�ed if onvenient parameterization of the residue is hosen. We now disuss how theseparameterizations hange when Ds-dimensional unitarity uts are onsidered.A. Pentuple residueTo alulate the pentuple residue, we hoose momentum l suh that �ve inverse propa-gators in Eq. (13) vanish. We de�nee(Ds)ijkmn(lijkmn) = Resijkmn�N (Ds)(l)d1 � � �dN� : (14)The momentum lijkmn satis�es the following set of equations di(lijkmn) = � � � = dn(lijkmn) =0. The solution is given byl�ijkmn = V �5 +s �V 25 +m2n�25 + � � �+ �2D  DXh=5 �hn�h! ; (15)where mn is the mass in the propagator dn whih is hosen to be as dn = l2�m2n by adjustingthe referene vetor q0. The parameters �h an be hosen freely. The four-dimensional vetorV �5 depends only on external momenta and propagator masses. It is expliitly onstrutedusing the Vermaseren-van Neerven basis as outlined in Ref. [24℄. The D � 4 omponentsof the vetor lijkmn are neessarily non-vanishing; for simpliity we may hoose lijkmn to be�ve-dimensional, independent of Ds. We will see below that this is suÆient to determinepentuple residue.To restrit the funtional form of the pentuple residue eijkmn(l) we apply the same reason-ing as in four-dimensional unitarity ase, supplemented with the requirement that e(Ds)ijkmn(l)11
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depends only on even powers of se; this requirement is a neessary onsequene of the disus-sion around Eq. (8). These onsiderations lead to the onlusion that the pentuple residueis independent of the loop momentume(Ds)ijkmn(l) = e(Ds;(0))ijkmn : (16)To alulate e(0) in the FDH sheme, we employ Eq. (10) and obtaine(0);FDHijkmn = � D2 � 4D2 �D1�Resijkmn�N (D1)(l)d1 � � �dN�� � D1 � 4D2 �D1�Resijkmn�N (D2)(l)d1 � � �dN� : (17)The alulation of the residues of the amplitude on the r.h.s. of Eq. (17), is simpli�ed bytheir fatorization into produts of tree amplitudesResijkmn�N (Ds)(l)d1 � � �dN� =XM(li; pi+1; : : : ; pj;�lj)�M(lj; pj+1; : : : ; pk;�lk) (18)�M(lk; pk+1; : : : ; pm;�lm)�M(lm; pm+1; : : : ; pn;�ln)�M(ln; pn+1:::; pi;�li):Here, the summation is over all di�erent quantum numbers of the ut lines. In partiular, wehave to sum over polarization vetors of the ut lines. This generates expliitDs dependeneof the residue, as desribed in the previous setion. Note that the omplex momenta l�h =l� + q�h are on-shell due to the unitarity onstraint dh = 0.B. Quadrupole residueThe onstrution of the quadrupole residue follows the disussion of the previous subse-tion and generalizes the four-dimensional ase studied in [23, 24℄. We de�ned(Ds)ijkn(l) = Resijkn0�N (Ds)(l)d1 � � �dN �X[i1ji5℄ e(Ds;(0))i1i2i3i4i5di1di2di3di4di51A ; (19)where the last term in the r.h.s. is the neessary subtration of the pentuple ut ontribution.We now speialize to the FDH sheme. In this ase, the most general parameterization ofthe quadrupole ut is given bydFDHijkn (l) = d(0)ijkn + d(1)ijkns1 + (d(2)ijkn + d(3)ijkns1)s2e + d(4)ijkns4e; (20)where s1 = l � n1. We used the fat that, in renormalizable quantum �eld theories, thehighest rank of a tensor integral that may ontribute to a quadrupole residue is four and12



�nd Z dDl(i�)D=2 s2edi1di2di3di4 = �D � 42 ID+2i1i2i3i4 ;Z dDl(i�)D=2 s4edi1di2di3di4 = (D � 2)(D � 4)4 ID+4i1i2i3i4; (26)Z dDl(i�)D=2 s2edi1di2di3 = �(D � 4)2 ID+2i1i2i3 ;Z dDl(i�)D=2 s2edi1di2 = �(D � 4)2 ID+2i1i2 :Using Eq. (26), we arrive at the following representation of the sattering amplitudeA(D) = X[i1ji5℄ e(0)i1i2i3i4i5 I(D)i1i2i3i4i5+X[i1ji4℄�d(0)i1i2i3i4 I(D)i1i2i3i4 � D � 42 d(2)i1i2i3i4 I(D+2)i1i2i3i4 + (D � 4)(D � 2)4 d(4)i1i2i3i4 I(D+4)i1i2i3i4�+X[i1ji3℄�(0)i1i2i3 I(D)i1i2i3 � D � 42 (9)i1i2i3 I(D+2)i1i2i3 �+X[i1ji2℄�b(0)i1i2 I(D)i1i2 � D � 42 b(9)i1i2 I(D+2)i1i2 � + NXi1=1 a(0)i1 I(D)i1 : (27)We emphasize that the expliit D-dependene on the r.h.s. of Eq. (27) is the onsequeneof our hoie of the basis for master integrals in Eq. (26).We note that the above deomposition is valid for any value of D. We an now inter-polate the loop integration dimension D to D ! 4 � 2�. The extended basis of masterintegrals that we employ provides a lear separation between ut-onstrutible and rationalparts of the amplitude. The ut-onstrutible part is given by the integrals in D-dimensionsin Eq. (27), while the rational part is given by the integrals in D + 2 and D + 4 dimen-sions. However, it is possible to use smaller basis of master integrals by rewriting integralsfI(D+4)i1i2i3i4; I(D+2)i1i2i3i4 ; I(D+2)i1i2i3 ; I(D+2)i1i2 g in terms of fI(D)i1i2i3i4 ; I(D)i1i2i3 ; I(D)i1i2g using the integration-by-parts tehniques.Sine we are interested in NLO omputations, we only need to onsider the limit � ! 0in Eq. (27) and neglet ontributions of order �. This leads to ertain simpli�ations. First,in this limit, we an re-write the salar 5-point master integral as a linear ombination offour-point master integrals up to O(�) terms. If we employ this fat in Eq. (27), we obtainlimD!4�2� 0�X[i1ji5℄ e(0)i1���i5 I(D)i1���i5 + X[i1ji4℄ d(0)i1���i4 I(D)i1���i41A = X[i1ji4℄ ~d(0)i1���i4 I(4�2�)i1���i4 +O(�) : (28)15
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s2e = (l̃ · n5)
2
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pp→ tt̄ +X pp→ tt̄ + jet +X

partonic channels: LO + 1-loop: gg, qq̄ gg, qq̄, gq, gq̄

primitive ampl.:

LO + 1-loop:

1-loop topologies:

31 10 354 94diagrams:

evaluation time
3-5 msec 10-40 msec

/prim.ampl./helicity
[Intel Xeon 2.8GHz]

0→ tt̄gg 0→ tt̄qq̄ 0→ tt̄ggg 0→ tt̄qq̄g

8 5 36 18

≈300 msec0→ tt̄gggg :



D-Dimensional Generalized Unitarity & Top Quarks

Markus Schulze,  Johns Hopkins University                   Loopfest VIII        14/18

• switch to quadruple precision if necessary

Numerical stability:

• no stability issues

• checked threshold effects
t̄t :

tt̄ + jet :

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

-14 -12 -10 -8 -6 -4 -2  0

%
 o

f 
to

ta
l 
e

v
e

n
ts

log10(|1-X/QP|)

AL(1t,4g,3g,5g,2t)

improved DP
raw DP

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0.0001  0.001  0.01  0.1  1

βtop

β=

√
1− 4m2top/ŝ
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